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¢ , ' Preface

Blowout prevention is an important activity in the oilyindustty. A
blowout hay develop using either low density or high density drilling fluid.
When a high pressure zone is encountered with a low density fluid, a kick
occurs. A blowout-may develop if the kick is not properly controlled.

Since the progress of the kick is relatively slow, the drilling engineer
usually has suf£1c1ent time to detect and control it. However, it is bettef
to detect the high pressure zone before it is encountered. There are several
techniques to detect high pressure zones, mainly based upon porosity change
(logging, from cuttings, etc.) and effective stress change (higher drill-
ability due to both small effective stress and porosity).

A blowout mey also occur using a high density drilling fluid, especially
in offshore drilling where tectonic stresses at shallow depths are'very small
with respect to depth from the drilling mud line. ‘When high density mud is

used during deep offshore operations, tne mud may induce fracturing at

shallow depth clese to the bottom of the ocean. Drilling fluid rapidly leaks
off and control cf high pressure zones at greater depths is reduced. This

can develop very rapidly and thus is more catastrophic than the previous case
where lower density driiliné fluid is used. To prevent rupture of the borehole,
the drillinglengineer should know epproximately the tectonic stress. There

.are three methods developed so far to determine the horizontal tectonic stress.
These are: leak-off test, deformation test of the borehole, and core defor-
mation test. These three techniques are not continuous methods, and the tec-

tonic stress can be known only at the position where these tests are performed.



Before 1970, petroleum engineers often used Young's modulus and Poisson's

ratio to estimate horizontal tectonic stress from vertical tectonic stress.
However, this techniéue proved to be useless since the ratio of horizontal
- tectonic stress to vertical stress is not directly related to thesé instan-
taneous elastic moduli when one applies them to sedimentary rocks buried and
compacted in geologic time. Thus drilling engineers have no techniques at
present to co;tinuously estimate the horizontal stress. However, Dr. Louis
J. Thompson's papers give very practical results to predict Kb’ His results
show that K.o depends upon grain distribution, grain shape, porosity, etc.
These parameters can be measured continuously from cuttings. In addition,
one may use porosity, Young's modulus and Poisson's ratio from logs. All
this information, if properly analyzed,vwill allow prediction of Kb’ or
at least predict it if the Kb estimated from a leak-off test at a certain
depth is added.

The drilling engineers has little time to analyze the data, even given
a reliable techrique to estimate Ko' It is true that he must get necessary
information during drilling for the first exploratory well. In this case,
he may not have sufficient time to analyze the data, except by reducing
drilling rate. However, for the second well in the same area, he may properly
design drilling fluid densi;y and casing depths, to prevent blow-outs. In
a&difion, he ﬁay plan proper kick control proceduré.

Thus, we believe that Dr. Thompson's experiments are both scientifically
and practically useful. We strongly support this research. However, there
is a problem in the use of effective stress. This short report is intended

as a contribution to that research effort.



GENERAL STATEMENT ON EFFECTIVE STRESS CONCEPTS

A lot of literature is available to explain the concept of effective
stress ever since Terzaghi first introduced it. Some authors have tried to
explain it from a théoretical basis while others have used expefimental
data. The theoretical effective stress concepts proposed so far are actually
consistent wifh each other, even though some authors have tried to prove that
other effective stress concepts were wrong. The differences are apparent
rather than real; the differences are in definitions, not in consistency of

the theories. It is true that there are some differences in basic assumptions
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used. However, beginning with those same assumptions, it is possible to
‘derive identical constitutive stress-strain equations, the apparent differences
being in fact only a matter of definitions of effective stress.

Although theoretical developments on this subject are consistent with one
another, there are lots of discrepancies among experimental results, partic--
ularly in publicztions that appeared before 1970. One problem in experimental
work is the mainzenance of uniform pore pressuré, another is experimental
accuracy. One might think that if rock permeability is high (say 100 md.)
then pore pressure would become uniform instantly, no matter the pore fluid.
This is true in most sandstones, but there are exceptions, e.g., sandstones
in the geopressured-geothermal zone along the Gulf Coast; dolomites, and lime-
stones. These rocks have vuggy main capillaries and have a relatively high
percentage of micropores. Proper fluid or special procedures must be used
to achieve uniform pressure in the micropores. Otherwise, one may easily

destroy these micropores or measure extraneous strain.



Uniforﬁity of pore pressure is e#tremely difficult to achieve if the
permeability is less than 1 md. Most clays have low permeability, so that
water injection into the pores results in deformation of the bulk clay,
rather than individual grains. Special procedures and special combinations
of pore fluids (fof example, slightly greater than irreducible pore water
‘saturation plgs air, with air ;s displacing fluid) to achieve uniform
pressure. M

‘ Other discrepancies among experiments involve measurement errors and
expérimental procedures. To prove the effective stress concept experi-
mentally, ; strzin measuiément device-with high accuracy -and a proper load-
ing device to measure exact load on the porous sample is néeded (friction
is one of the mzin sources of error). Porous material displays hysteresis
during loading zad unloading. The non-linearity of stress-strain behavior
sometimes masks the effect of effectiQe stress. Elimination of all experi-
mental error menzioned above is very difficult in certain types of porous
material, in which materials it is difficult to check whether the effective
stress cohcept holds. 1In addition, one can éasily find igneous rocks, or
construct artificial rocks, which do ﬁot fit the ideas of effective stress.
Conseqqently effective stress concepts cannot always be applied. However,
for the case of interest here - sedimentary rocks and soils - the effective
stress law is appropriate. The sédimentation process and natural environ-
ment in which it occurs leads to a porous material to which the effective

stress law can be applied.




EFFECTIVE STRESS LAWS FREQUENTLY USED

The effective stress law in a general form can be expressed as a

decomposition of total stress as follows:

cij = (cij + Sij) - ?ij (1)
. - + - tension
where 'cij Total stress ( _ gompression)
e
Gij Effective stress = (crij + sij)
S_. = Stress component affecting strain due to
13 pore fluid
It is inconvenien£ to use the equation in this form, and previous workers
have simplified it. A simpler form of the above equation is:
045 = [oij + f(p)sij] - f(p)éi:l (2)
where f£(p) = represents a factor which is a function of pore

pressure and structure of the porous material.

Equation (2) is wery useful when f£(p) can be determined. Since most of the
grains of sedimentary rocks and soils are anisotropic, Sij should have some
directional propertiesi However, since orientatioq'of grains is generally
random with respect to crystal axis, we can express Sij in the form f(p)ﬁij,

if Fhe rock is assumed to be homogeneous. Although such an assumption may

be applicable to sediméntary rocks, for macroscopically anisotropic rocks,

sﬁbh as rock consisting of thin layers of homogeneous bedding planes with
different elasticity properties, Sij can not be strictly represented by f(p)&ij.

Each layex has a different matrix compressibility, and the average strain due



to pofe pressure may be different along and across the bedding planes.

With the exception of such special cases, most rpcks or clay grains
deform approxim=tely linearly with increasiﬁg pore pressure.. Hence, Eq. (2)
is frequently simplified as follows:

e
oij

= [0’

oij; + ePdij] - 6P§ij : | 3)

1]
where ¢<e<1 ; | %)

Equations (3) amd (4) are perhaps confusing, since © can be taken con~
tinuously between ¢ and 1, depending upon the particular rock. Hence, the

following form is preferred.

Oij = icij + (0 + AG)PGij] - (6 + AB)PGij (5)
where 0 = Specific value depénding,upon the definition of effective
stress '
AB = Small correction factor satisfying |A8/8]=0

The value of § depends upon definition, rather than discrepancy between
theories regardirg effective stress. The following definitions for 6 are

commonly used in the literature.

Effective Stress For Stress-Strain Relations With Superposition Rule

For this effective stress definition, 6=1. This definition is very
useful in deriving constitutive stress-strain relationships using the

superposition rule,
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Effective Stress Acting on Average Mineral Area

For this effective stress definition, 6 = ¢, where ¢ is the porosity.
The value O should be replaced by effective surface porosity area for clay
where the boundaries between grain and pore fluid is not clear. This defi-
nition is very useful when independent treatment is necessary between grain

and pore fluid. For wave propagation through porous material with pore fluid,

both solid phase and fluid phase should be handled independently, considering
interaction'beéween each other. Also, where boundary conditions can be im~
posed separately between the solid and fluid portions, this definition for

0 is useful.

Effective Stress Is The Only Factor Contreclling Total Strain

B
In this case, 6 = 1 - 323 where Bi and B are compressibilities of the

rock grains and rock bulk, respectively. This definition is useful for
linear stress-strain relations, because total strain sgcan be expressed
completely by Oije, such as qfcije)' However, moét sedimentary porous
materials exhibit significant non-linearity, hence this definition has

limited utility.

Effective Stress For Failure Theorem

In this application, 6 = n where ¢ <n <1. For sedimentary rocks

and soils, n is very close to 1. For most igneous rocks, n is close to 1,

. but rocks may be found where n is.Substantially smaller than 1. Artificial

rock can be constructed for which n = ¢. In an extreme case, one could

even construct an artificial rock with n > 1.




' THEORIES AKD EXAMPLES SUPPORTING EACH EFFECTIVE STRESS CONCEPT

In this séction,‘each effective stress concept and examples pertinent
thereto are given. Although thevdefinitions and derivations are different,
the constitutive st;ess-strain relations expressed by these effective
stresses are all consistent. Furthermore, none of them are contradictory

to equations of continuum mechanics.

Effective Stress For Stress-Strain Relations With Superposition Rule

Figure 1 illustrates this concept. Assume two identical porous materials
having a certain s?ress-stiain property at atﬁospheric pressure. If one of
them is submergeé in the ocean, as it.sinks slowly to the bottom it shrinks
slightly, due to hydrostatic pressure in‘the interpore material. Because
this neutral stress is acting uniformly both upon pores and mineral matrix
(if there are no isolated pores in the body) the interpore material shrinks
proportionally to pore space and the shape of the pore space remains constant;
porosity also remains constant even though each pore becomes slightly smaller.
Suppose an additional stress, AF, is applied to the two porous samples one
on the surface and one in the ocean. Since the deformation character of
rock bulk mainly depends upon porosity, pore shape, and size distribution,
the strains induced by the additional étress, AF, are approximately equal for
tﬁe two rock specimens. This additional stress corresponds to qzj = oij
+ péij.where the neutral stress, pGij, acting equally through pore and mineral
matrix is subtracted. This intuitive explanation can be replaced by the follow-
ing mathematical egpression. Any system of the total stress Gij acting simul-

taneously with a pore pressure, p, can be divided into two parts:




o,, = (0,; + pé - pd 6
13 (94 pdyy) L (6)
e
Gij
The strain corresponding to the neutral stress, pBij, is characterized by
the elastic coeZficient of interpore méterials, consisting of interpore
matter and non-interconnected cracks. Since nonlinearity caused by the
interpore material is trivial, one may neglect the non-linear terms and
v 1-2v »
€,, = = i
ij B péij | (N
i

1- Zvi'

where . is the compressibility of the interpore material.
i .

The strain corresponding to the stress system 0:3 is

et 1+t V—e Vv —e N —e P e

Eij 3 oij Esijckk"'_eij(oij)"'eij (oij) (8)
for time indeperdent material, where

E, v = Elastic constants for bulk rock

sgj = Initial non-linear strain

ezj = Final non-linear strain
These initial ard final non-linear strains are illustrated in Figure 2.
‘Thus, - the total stress-strain relation is given by

l1-2v
i14+v—e \Y . i N P
= o -=36,.0 - == 16 + € + € 9
3 7 TE %13 TE 1% T TE o POy Syt Eyy ®

i
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Equ#tion (9) is approximately applicaBle if the porous material has the
following characteristics: (1) there are few isolated pores in the inter-
pore material, (2) the interpore material doesvnot include highly compress-
ible minerals (whose effect would.be similar to isolated void pores), and

(3) the interpore material is macroscopically homogeneous.

Effective Stress Acting Upon Average Mineral Area

This idea is very often used to construct equations of motion for solid
and fluid phases independently, rather than consider them as a whole body.
When it is not necessary to isolate solid and fluid phases, total force
satisfies the equéfion of equilibrium'(Note: many previous. workers have
unnecessarily complicated the procedure of finding thelsolutioﬁ to a problem
in which both solid and fluid phases can be treated as a whole body). How-
ever, it is essenmtial to handle both phases separately when the solid motion
and the fluid motion should be describeq_independently. For these kind of
problems, it is necessary to introduce the average stress in the mineral
matrix and average fluid pressure acting on the pore space as follows

(See Figure 3).

Q
]

8 A.c + pA,W (10)

where O = Total normal stress
8 = Mineral normal stress

Ratio of the area of the mineral and of the water respectively,
to the total area

A LA

In Equation (10), Aw, is the area of pore fluid; it is equal to surface
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porosity, ¢, for porous material with solid skeleton. However, ;t is
necessary to introduce effective surface porosity for those materialé
(1ike clay) where the phase boundary between grain and pore fluid is not
clear.

The important‘fact is tha; although the concept of ﬁineral stress
(Eq. 10) is #gry useful to describe the equation of motion, care ﬁust be
taken in applying‘it to constitutive streéss-strain relations and fail;re
theorems, because the mineral stress is not direcfly related to tétal
strain or failure theories of a porous body, except in certain special
problems. Figure 4 illusérates this problem intuitively. Assume the same
average mineral stress to be applied to both rocks. For ro;k (B), pressure
P is applied on the boundary of the roék and throughout the pores. 1If the
grains do not include lots of isolated pores, the stress distribution in
each grain is approximately hydrostatic. Assume that for rock (A), force
F = PAc (per unit area) is applied on the boundaries of the rock but the
pressure in the pores is zero. In this case, the average mineral stress is
still hydrostaéic, but the stress distribution in each grain is very compli-
cated. Most of past experiments have shown that the total strains in both
cases are quite different and the compressibilities of ropk bulk and rock
mineral matrix, respectively? must be introduced to each case. The:e are,
however, certain special synthetic rocks where it is possible to describe
the Sstress-strain relations using only the average mineral matrix stress. As
will be explained later in Figure 7, if the distribution of stress in the
rock matrix remains constant no matter how the load is applied to the porous

material, then the resultant total strain can be expressed using only the

average mineral stress.
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In order to overcome the above problem Biot introduced strain energy,
V, to describe a constitutive stress-strain relation with respect to mineral
stress as follows:

e e
™ e+

= Ln® e e_’
v 4(o*ex + oy ey + ozez + vz Eyz szezx + rxy %y

* E0) (11)

where 7 =P

T = deformation of pore fluid

In this equatior average stress O'ije acting upon the mineral part is used,

where the total stress is decomposed into the following terms:

ij
~A—

Since this approach is very popular, details of the derivation are not

given here. Using

awaexx Oy x? aV/aexy = oxy, etec.,
OV/9E = G..

Biot obtains

2Ne_ + Ae +§(’6-Qe)

=2Neyy+Ae+§('6-Qe) a3
of, = 2¥e__ + ae + 2 (@ - Qo)

e

- e _ _
oyz h,-.yz, ozx = Nezx, ny Nsxy

The important fact in Equation (13) is that the total strain is not only a

function of minerzl stress cije but also a function of pore pressure. The
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physical interpretation of coefficients_N, A, Q, and R shows that Equation

N and € P although its

ij ij
appearance is different because of the difference in the definition of

(13) 1is consistent with Equation (9) without €

effective stress.
Several assumptions are used in Biot's work. One may, therefore,
question whether these assumptions could be applied to porous matter or not.

In particular:'the existence of strain enpergy, V, is doubtful if one con-

siders that the rocks deform with friction between individual grains and

with mieute crack propagation, which dissipates energy. However, the stfain
energy concept can be used only when Fhe coefficients relatiﬁg to pore pressure
are to be determined, Since porous materials deform uniformly with an incre-
ment in pore pressure, the slippage, frietion, or crack propagation may be
very small, in which case dlssipatlon of energy may be neglected. Thus,
Biot's approach mmy be reasonable if the coeff1c1ents related to pore fluid

are determined.

Effective Stress Is The Only Factor Controlling'Total Strain

It is often convenient to rewrite Equation (13) as follows:

i1+v e

i3 E . %1j 6

(14)

=)<

e
15 kk

- It 1s possible tc determine sz for porous material with linear properties

1f the strain energy concept proposed by Biot is applied. This approach has
been used by several authors (Amos Nur, S. K. Garg, ...). The final result

is given by:
' B
e 1
= - 15
-Gij gij + (1 —:B-)paij ‘ (15)

where B and B are the compressibilities of mineral and rock bulk,

respectively.
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This concept is very useful to analyze experimental data since strain is

expressed only in terms of Oij. However, 1its use is very limited. The

reason is that most granular materials are very non~linear and one may

easily conduct erroneous experiments or proﬁuce useless data if this effec-

tive stress concept definition is used. Although the constitutive equations

appear different, they are actually equivalent.

Effective Stress For Failure Theorem .

InAdevgloping an effective stress concept for use in failure theory,
one must apply an appropriate failure criterionm. In gengral, failure
criteria are expréssed in terms of stress, strain, or energy. In the
explanation below, failure criteria in ﬁerms of gtress are used, When hydro-
static stress is applied to a non-permeable material, the rock strength is
affected in two different ways. Figure 5 illustrates these differences
intuitively. Let a certain material haﬁing tensile strquth Op ét atmospheric
pressure, be submerged into the ocean so that hydrostatic pressure is applied
upon the surface of the sample. If additional stress, AF, is applied to the
pPorous material on the bottom of the ocean, two extreme effects of hydro-
static pressure are observed. If additional stress AF is applied to the
sample without void space or defects inside, (B in Figure 5), this material
fails if additional stress AF = Ot. This is so because, for solid materials
fajlure theorems proposed by von Mises, Tresca, or distortion energy theorem
c;n be applied and hydrostatic stress should be subtracted. However, if the
material has lots of void space (B' in Figure 5) and the pressure in this void

space is zero, this material does not fail even if AF = Ut is applied. 1In

some extreme cases, one must apply additional stress (Ot + p) until it fails.
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Mbst.materials have properties lying between A and A' in Figure 5. However,
as far as fhe grains of natural rock are concerned, they are closer to type
A rather than type A'. In this sec;ion for effective stress concepts for
failufe, the porous material is assumed to have two types of mineral matrix
represented by B aﬁd B' in Figure 5. Assume rocks A and B in Figure 6 have
grains and ceﬁgntiﬁg material whose character is represented by the material
A and A' in Figure 5, respectively. Bec;use the mineral matrix is.nona
porous for case A in Figure 6, the hydrostatic stress should be subtracted
from the failure criterion no matter how large the contact area Setween

grains. Hence, the follbwing effecti%e stress should be applied to failure

criterion of the bulk of the porous body:

e

Og5 = 935 * POy, | (16)
oij = Total stress (compression: mnegative)
N = Effective stress constant
where n=11i1in this case

Most sedimentary rocks have their character represented by A in Figure 6,
however, there are certain types of rocks whose mineral-texture is more
closely represented by B. For.this type of rock, the effective constant
is not necessarily close to 1. However, it will be shown that it should
be close to 1 for most sedimentary porous rbcks.

In order to demonstrate this, start with counter examples where n < 1
and n > 1. Figure 7 shows an artificial rock with n = ¢. The ﬁineral matrix
consists of impermeable material with voids in it. Since the shape of each
matrix is rectangular, there exists no stress concentration in. it. Hence,

rock fails in tension when the effective stress acting on the mineral matrix
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equals the strength of the mineral matrix. Hence n = ¢.

Figure 8 shows an example where n > 1. There exists this type of
natural sedimentary rock which is weakened by stress concentfation due to
pPore pressure. Most of the previous extension tests have shown that, with
pore pressure, rocks get weakened, and fail in compression stress state even
during extens%on tests. However, these results may be partially due to
stress concentéations induced by uneven loading rather than heterogeneity of
the rock. The results in our laborato}y experiments showed that if uneven
loading is eliminated, rock is strengthened slightly with pore pressure due
to void space or defects éxisting in the rock matrix, if the pore pressure
is less than a certain amount. Of course, the Griffith thegry states that
if effective confining pressure exceeds a certain amount, rock fails in
compression, i.e., oij + paij < 0, even for exténsion tests.

All existing rocks do not have an idealistic pore structure given by
Figure 9. Most sedimentary rocks consist of grains and pores, where pore
shape is very irregular and sharp corners exist.around the pores (A in
Figure 9). When applying a failure theorem to these rocks, one either uses
the weakest plane failure theorem (B in Figure 9) or Griffith theorem (c
in Figure 9). The previous model is based upon the fact fhat when a granular
material fails, the failure surface develops along the weakest plane with
smallest grain contact area. In this case, the strengthening effect of pore
pPressure upon thkis smallest area is negligible even if the porous material
has mineral matrix with void space (B in Figure 6). Hence, in the effective
stress °§j = Gij + anij, N should be close to 1. However, rocks that are
subjected'to a leaching process do not have small contact area because they

do not consist of spherical grains with small grain to grain contact area.
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For these rocks, one may apply modified Griffith theorem with pore pressure
applied to elliptical flat cracks (C in Figure 9).
In order to avoid unnecessary complication, one assumes small elliptical

cracks with pressure, P, on inner elliptical surface and outer surface. If

one applies total stress, 0, and extends the rock, the stress induced at the

end of the major axis of the ellipse is given by

o, = (c + p)[2(¢a/b) + 1] - P, (17)

If ﬁhe porous material consists of mineral matrix without void space (A in

Figure 6), it is obvious that the effective stress concept czj =0,, + pdi

ij J
holds for any a/b. However, if the mineral matrix has void space (B in Figure

6), the rock bulk does not fail until Gn =0, is ‘satisfied, where o, is matrix

strength. If p =0, we have
a .
Ot = 50[2(b) + 1] ) (18)
where So is the strength of rock bulk at atmospheric pressure, Hence,
. i
S, = 6,/[26) + 1] 19)
For pore pressure p, the failure condition gives
(s+p)[26) +1] - p =0, (20)

éhere S is the rock strength at pore pressure p.

Thus, s
o_+p : §
t
S+p=—F——=5 +p="> (21)
2&) +1 t
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: S
or S+pl-=2)=s
O’t o
' (21)
or S+np = So
where
so
‘n=l———
Gt
So a
Since - 0 as 3 0, one can conclude that n is close to 1. Comparing the

models ;iven by Figure 7 and Figure 10, Sne finds that the value 1 varies
from ¢ to 1, depending upon the stress.concentration around the pore surface.
As explained in this report, porous material more frequently has a mineral
matrix with small “amounts of void spaée (A in Figure 6) but as a special
case may have mineral matxrix with a significant amount of void space (B in

Figure 6). Hence, even if stress concentration around the pore is small, the

rock bulk fails according to the effective stress law with n=1.




CONCLUSIONS

1. There are three definitions of the effective stress concept as
applied to porous material with pore fluid. These are 0:3 =-01j +
° + Ae)péij where: 0 = 1, for effective stress for stress-strain relations
with superposition rule; 0 = ¢ for effective stress acting on average mineral
area (¢ is pososity for solid éock and should be replaced by effective
porosity for ciay or soil); and 0 = 1 for failure criteria. 1In addition;
there are several other effective stress definitions. Howevef, cbnstitutive
stress-strain relations based upon these definitions are idential and not
contradictory to each othér. |

2; The correction term, A8, in the effective stress law is not neces-
sarily zero. However, some porous materials have trivial A® unless there
exists significznt amounts of isolated cracks or compressible materials in
the mineral matrix, or the mineral matrix is macroscopically heterogeneous,
which causes local stress concentrations. /

Natural processes of sedimentation work in favor of satisfying the above
conditions, and most sedimental soil and clay have trivial A®. However, one
may find non-trivial A® in volcanic rocks and artificial rocks.

3. Some of past experiments show discrepancies. However, one may ob-
tain better results in favo; of effective stress concepts if: 1. the pore
pressure is uniform, where the pores includes both main capillarie; and micro-
pores, 2. load %s uniform, 3. proper experimental procedures are used to
handle non-linearity, hysteresis, and the difference between loading and

unloading character, and 4. errors due to apparatus friction and strain

measurement are minimized.
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ANALYSIS OF DATA USING EFFECTIVE STRESS CONCEPTS

Since Dr. Thompson's expefimental data to obtain the water area A.w are
based upon the following equation
Aw = APc/(Pp - Ppo) ' - (22)
by setting axial strain to be zero, the convenient constitutive stress-strain

relation to use is given by

e
1%k

Dol tv e v
eij 5 Uij_ 5 8 (23)
where : ’ . . -
e Bi -
oij = Oij + @ -<§—)p6ij . (24)

In this equation, oij

mineral matrix and rock bulk, respectively, €

is effective stress, Bi and B are compressibilities of
1 is total strain and p is
pore pressure. Comparing with the experiment in Dr, Thompson's paper one

obtains

By
Aw =] -~ 'S (25)
where Aw = water area

Tables 1 and 2 show the results for incremental A.W and compressibility
B i
‘ratio Ei' Variation of Aw. shows the difficulty of monitoring radial strain,
) i
friction and pore pressure. However, there is nothing wrong with the experi-

ment; it simply is extremely difficult to conduét.

20
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As far as sand compaction is concerned, — is fairly constant and
reasonable. The tendency of decreasing ;i-appears contrary to our experience
since the formation bulk modulus is normally smaller at higher effective

stresses (03 = OQP) in the loading process. However, since the measurement

of Aw is done in the unloading process, i.e., for decreasing effective stress;

" the results may be acceptable. This is because total bulk volume consisting

of sand particles tends not to rebound properly (or completely) without cement-

ing material between them during unloading. Hence, the value B tends to in-
crease during unloading, until the effective stress reaches a certain level
where sand particles interfere with each other without sliding.

The results given in Table II (Marine clay) are difficult to interpret.

B

i .
From conmon sense,'g— should increase as effective stress increases and

porosity decreases. One may consider the following reasons to explain the

.results:

1. Since the phase boundary between solid and water changes with
compaction by dewatering, the value Bi decreases with increase in effective
stress,

2. As explained in the case of unconsolidated sand, bulk volume does
not rebound properly during unloading.

3. Since the permeability is extremely small, incfementally added pore
pressure tends to deform rock bulk rather than mineral matrix. Although
final pbre pressure is constant throughout the pbres, the non-uniform pore
pressure at the instant of pore pressure increment causes residual strain,
especially when the skeleton of the porous material is weak (ﬁhen effective

stress is-small) and permeability is small.
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Although application of the constitutive equation given by effective
: , B
stress 0°, = °1j + (1 - Ei)pﬁij makes it easy to interpret deformation

ij
physically,-i; complicates rigorous development of constitutive equations
and experimental procedures. For compaction problems, a better approach
would be to apply éffective sttgss for stress-strain relations with super-
position. As .stated earlier, this concept can be applied to clays, soils, .
and rocks unleés the ﬁineral matrix includes a lot of isolated porosity.
After decompésition of total stress ois = (Uij‘+ pﬁij) - Paij’ thé clay or
soil matrix part approximétely deforms lineayly with - pGij and non-linearly
with the effective stress Uij = Gij +'p61j. Hence, the total strain is
given by | | ‘

. . A
, eij = eij(oij) + chSij : . (26)

‘where eij = a function of oij only.
The difficulty involved for compaction problems is that B is not a constant,
unlike rocks or soils without compaction in proéress. B and coefficients

eii are functions of degree of compaction, that is, they may be expressed by
porosity, effective stress, effective contact area, ..., whatever related to
the degree of compaction. However, there is nothing wrong in the application
of effective stress (Uij = dij + péij); it is very useful to isolate the
effect of pore pressure for compaction problems, since this effective stress

definition does not include rock parameters.




TABLE 3 - Horizontal Stress Measurements mth Pore .
Pressures Induced for Sample No. 0S5-3
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Ay |

Correlation

o, Applied, u Induced, % Measuredi lat _ B.f“
psi n, % psi - " psi '(-.A,uc) Coefficient g 55
407 38.5 0 '182> " 0.713 0.98751 287

; 3 - !
45 qq
90 - 242) !
’ 705.
134
;: ).AS?
| - 179 . 304
1385 38,1 0 545) ) 0.723 0.99928 277
- 90 701’ :
. * )1073
179 770 .
)M
269 : 840; 5;
359 900 !
- ).’BO
448 965 .
2688 37.6 0 1278y 1 0.723.|  0.99893 .277
179 1385
)me
359 15257
)
538 1657J ]
)2
n7 1786 .
5295 36.6 0 2584 7¥% 0.784 0.99974 L w6
179 2n8”’
L1
359 2861) ‘
538 3003, 0
).741
N7 3137
896 3238)'




24

N\ } g :
JABLE 1 - (Continued)
6v Applied, u Induced, | % Measured, 1 Cofre]ai.:ion
psi n, % psi - psi {A‘) : Aw | Coefficient
10,183 34.5 0 5744 0.749.| 0.99911
' ).')31 ' ' .
179 5875
. )ns
359 - 6011,
538 6145
. ©)
- 717 6306_-
) 542
896 6412
7
1075 6546) “Z
. ¥
1255 668(2'7
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TABLE 2 - Horizontal Stress Measurements with Pore
. Pressures Induced for Sample No. MC-II-U

o, Applied, 1 u Induced, o, Measured, | Correlation b
psi n, % psi psi (’“D A, | Coefficient /B
407 67.6 0 107) | o-591]  0.96233 409
. By | -
9% 136
)5
134 ba
, )l
s | 203
| ' ).’178
- 224 . 238
1385 55.0 0 620 0.644] 0.99995 | 356
179, - 734
S K31
359 851"
538 964
' J.M
77 1083 |
- 2688 48.5 0 1264 ) 0.728 0.99963 . 272
| 48 | '
359 1s509” | .
‘ ' 0l
nr 1756)~_
)5
1075 - 2029
: N2
1434 2299
S
1792 2562
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- TABLE 2 - (Continued)

Correlation

Sy Applied, ’ u Induced, 'oh leasured, | lat
psi n, % psi PSi(Aua Aw Coefficient
5295 42.0 0 2440) o 0.740 0.99821
359 2659 |
: : R
"7 2921
)84
1075 3240
¥ .)- 830
1434 3538,
-t
1792 3787
)cev
2151 4024’
, 66
2509 4273
l' &
2878 - 4526Ml
10,183 35.6 0 4942 | 0.716|  0.99947
: S )
359 5206
B3 X
M7 5473 .
' RATA
1075 - 5704-.
. '0713
. 1434 5960 .
LY
1792 6239

40

N /?{./é* .

~V5526Z?
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FIGURE 1 INTUITIVE ILLUSTRATION OF EFFECTIVE STRESS FOR STRESS~STRAIN

RELATIONS WITH SUPERPOSITION
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Surface Porosity
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Volume porosity

o= 6’1\,c + pAw
+ 4
a-¢ ¢

FIGURE 3 EFFECTIVE STRESS ACTING UPON AVERAGE MINERAL AREA
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AF - AF
. : - Impermeable Material With Void
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FIGURE 5 TWO EXTREME CASES ON THE‘ EFFECT OF HYDROSTATIC STRESS UPON
STRENGTH OF POROUS MATERIALS
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(A) | (B)

Porous Material with Porous Material with Mineral
Mineral Matrix without Matrix with Void Space
Void Space

FIGURE 6 TYPICAL EXAMPLES OF POROUS MATTER WITH GRAINS AND CEMENTING
MATERTAL WHOSE FAILURE PROPERTIES ARE DIFFERENTLY AFFECTED
BY PORE FLUID PRESSURE
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Calculation of n for extension test

1. Assume the tensile strength of mineral matrix to be Ot.

2. Strength of rock(S) = (l—cb)ot at atmospheric pressure
where ¢ is porosity. :

3. With pore pressure p, the failure condition of mineral
matrix is still Ot, or it is S as a bulk.

4. Since the effective stress acting upon mineral matrix is
Gij+ ¢p61j, failure occurs if oax + ¢ =S or n =¢ for

failure theorem. -

Fig.7 ARTIFICIAL ROCK WITH EFFECTIVE STRESS CONSTANT n-=¢
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Assume compressibilities of mineral matrix to be different for

each layer, and the tensile strength of the rock to be S at
atmospheric pressure. ' .

p

If hydrostatic pressure is applied at rock boundaries and thoroughout
pores, mineral matrix of each layer deforms differently. Due to

this difference, stress concentration occurs around the pore, and
hence, the rock is weakened and failure occurs for

o+p=8'<<S ,

where O is the total axial stress. Hence
o +((5-S')+p)=8

or O +0p=S where n>l.

Fig. 8 NATURAL ROCK WITH EFFECTIVE STRESS CONSTANT i1
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FIGURE 10 - GRIFFICE CRACK WITH PORE PRESSURE
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o, + P = (otp) [2()+1]




